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1 Introduction

This topic was suggested to me by Vera Serganova, as part of a graduate representation theory
course at UC Berkeley.

The project is based on the Vershik-Okounkov approach to the representation theory of symmetric
groups. It first appeared in Russian in their paper back in 1996, which was later modified and
translated into English in 2005 [5]. We base our exposition on the latter paper. The approach
that Vershik and Okounkov proposed corrects many drawbacks of the conventional approach to the
representation theory of symmetric groups. In particular, it takes into advantage the properties of
the groups and uses the fact that they form an inductive chain (with the natural embedding Sn−1 ↪→
Sn) to build the theory inductively. This way, Young diagrams and the branching rule appear
naturally in such theory, making the big picture clear and complete. To construct this theory, we will
introduce the notions of Gelfand-Tsetlin algebra, Gelfand-Tsetlin basis, and Young-Jucys-Murphy
elements. The appearance of these concepts is due to the fact that symmetric groups are Coxeter
groups, and taking into an account their intrinsic structure is the foundation of this approach.

2 Branching graph and Gelfand-Tsetlin algebra

In this section we introduce the first building blocks in the representation theory of symmetric
groups: the branching graph, Gelfand-Tsetlin Algebra, and Gelfand-Tsetlin basis. Given an induc-
tive chain of finite groups

{0} = G(0) ⊆ G(1) ⊆ G(2) ⊆ · · ·

let G(i)∧ denote the set of all distinct (up to isomorphism) irreducible representations of the group
G(i) in the chain. For any group G and any irreducible representation ρ of G, denote by V ρ the
the corresponding G-module. We define the branching graph Γ = (V,E) of the chain as follows.
Let V = {ρ : ρ ∈ G(i)∧, i ∈ N}, i.e. the vertices of Γ correspond to irreducible representations of
the groups in the chain. Let µ ∈ G(i − 1)∧ and λ ∈ G(i)∧ be irreducible representations. In the
branching graph, we join µ and λ by k directed edges µ→ λ, where

k = dim HomG(i−1)(V
µ,ResV λ) = (µ,Resλ)G(i−1),

and no other vertices are joined by edges. Note that by construction, if i ≤ k, the multiplicity of
µ ∈ G(i)∧ in ResG(i) λ for some λ ∈ G(k)∧ is nonzero iff there is a directed path from µ to λ in the
branching graph.
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From the definition above, it is clear that the branching graph is in fact a directed multigraph. We
say that branching is simple (or multiplicities are simple) for some inductive family of groups if
the branching graph is simple, i.e. when it has no multiple edges. If the branching is simple for
the inductive family {G(i)}i∈N, this means that at every stage of the graph, the multiplicity of an
irreducible representation µ of G(i− 1) in ResG(i−1) λ where λ ∈ G(i)∧ is either 0 or 1. Hence the
usual decomposition

ResG(i−1) V
λ =

⊕
µ→λ

µ∈G(i−1)∧

V µ

is canonical. Iterating this decomposition i times, we obtain the canonical decomposition

ResG(0) V
λ =

⊕
T

VT

where each VT is a G(0)-module and the sum is taken over all possible paths

T = (∅ = λ(0) → λ(1) → · · · → λ(i) = λ)

of the branching graph starting at ∅ ending in λ. Note that each VT is a one-dimensional vector
space, so we may pick a unit vector vT (with respect to the G(i)-invariant inner product) in each VT
and obtain a basis of V λ. This basis is called the Gelfand-Tsetlin basis (GZ basis). It is named after
the mathematicians Israel Gelfand and Michael Tsetlin. Israel Gelfand was a prominent Jewish
Soviet mathematician who made significant contributions to group theory, representation theory
and functional analysis. He was a recipient of many awards, including the Order of Lenin and
the first Wolf Prize. Gelfand was described to be “among the greatest mathematicians of the 20th
century” by The New York Times, having made his scientific impact both through his work and
numerous students. Michael Tsetlin, also spelled Zetlin (hence the abbreviation GZ) was also a
Russian mathematician and physicist, whose research was in cybernetics. Gelfand-Tsetlin bases are
very important and widely used in theoretical physics [6],[7].

For each i ∈ N, denote by C[G(i)] the group algebra of G(i), and let Z(i) be the center of this
algebra. Define the Gelfand-Tsetlin algebra (GZ algebra) GZ(i) of the inductive family of groups
{G(i)}i∈N to be the subalgebra of C[G(i)] generated by Z(1), · · · , Z(i). In symbols,

GZ(i) = 〈Z(1), · · · , Z(i)〉.

It is clear from this definition that GZ(i) is commutative. Moreover, it turns out that the algebra
GZ(i) is a maximal commutative subalgebra of the group algebra C[G(i)]. Furthermore, it coincides
with the subalgebra of functions on G(i) whose Fourier transforms are diagonalized by certain
Gelfand–Tsetlin bases. Further, it can be shown that every element in the Gelfand–Tsetlin basis
of V λ is a common eigenvector for all operators λ(f) with f ∈ GZ(i). In particular, it is uniquely
determined, up to a scalar factor, by the corresponding eigenvalues. For more details and proofs of
these facts, refer to Section 2.2 of [1].

3 Branching for symmetric groups is simple

In this section we prove a well-known result that the branching graph for symmetric groups is
simple, using the theory of centralizers and involutive algebras. While the concepts in previous
section were defined for general inductive chains of finite groups, we are interested in the particular
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case when G(n) = Sn for all n ∈ N. Hence, from now on, assume G(n) = Sn, the symmetric group
on n letters.

For any semi-simple finite-dimensional C-algebra M and its semi-simple subalgebra N , define the
centralizer Z(M,N) of the pair (M,N) to be

Z(M,N) = {m ∈M : mn = nm for all n ∈ N}.

Note that in the original paper [5], N is not necessarily assumed to be semi-simple, so the assumption
here is weaker, but sufficient for our purposes.

Theorem 1 (Artin-Wedderburn theorem).Any semi-simple C-algebra decomposes as a direct sum
of matrix algebras over C.

Theorem 2 (Double Centralizer theorem). Let A be a finite-dimensional simple algebra with the
property Z(A) = C and let B ⊆ A be a simple subalgebra. Then C := Z(A,B) is simple, Z(A,C) =
B, and dimC(A) = dimC(B) · dimC(C).

Theorem 1 is a classical theorem in algebra and the proof of Theorem 2 can be found in [2]. The
following criterion will be very useful.

Proposition 1 ([5], Section 1).The centralizer Z(M,N) is semi-simple and the following conditions
are equivalent:

(1) The restriction of any finite-dimensional irreducible complex representation of M to N has
simple multiplicities.

(2) The centralizer Z(M,N) is commutative.

Proof. We present a proof different from the proof in the original paper [5]. The following proof is
due to Wigner (outlined in [4]) and it employs some nice results from algebra. First, note that by
assumption, M is a semi-simple complex algebra, so by Theorem 1, it decomposes as a direct sum
of matrix algebras over C. Thus, we may write

M =

k⊕
i=1

Mi

where each Mi is a complex matrix algebra. Thus, we may identify the elements of M with tuples
(m1, · · · ,mk) with each mi ∈ Mi. For each i ∈ [k], define the projection map πi : M → Mi from
M onto the ith component. Since N is assumed to be a semi-simple subalgebra of M and since πi
is clearly a homomorphism, the image πi(N) = Ni is also a semi-simple algebra.

Next, it is easily seen that Z(M,N) =
⊕k

i=1 Z(Mi, Ni). Since each Mi is a matrix algebra over a
field, it it simple. Moreover, if Mi is an algebra of 1× 1 matrices, then Mi

∼= C and Z(Mi) = C; if
Mi is a set of r × r matrices with r > 1, then the only elements in Mi commuting with everything
else are c · Ir where c ∈ C, in which case again Z(Mi) = C. Thus, Mi is a simple central algebra
and Ni is its semi-simple subalgebra, so by Theorem 2, we conclude that Z(Mi, Ni) is simple for
each i. It then follows (by definition of semisimple) that Z(M,N) is semi-simple, as desired.
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We now show that (1) is equivalent to (2). For all i ∈ [k], denote by Vi the set of all tuples
(m1, · · · ,mk) where mj = 0 for all j 6= i and all entries of mi, except for the entries in the first
column, are zero. It is straightforward to verify (in fact, we had a similar problem on a homework)
that V1, · · · , Vk are all the distinct irreducible M -modules. Moreover, since each Vi embeds into
Ni, the decomposition of Vi into irreducible N -modules is the same as its decomposition into irre-
ducible Ni-modules. Now, from the decomposition of M , we have that Z(M,N) is commutative
iff Z(Mi, Ni) is commutative for all i ∈ [k]. Since the number of irreducible representations is the
number of conjugacy classes, the latter holds iff all irreducible representations of Z(Mi, Ni) are
one-dimensional for all i. Hence, we need to show that all irreducible representations of Z(Mi, Ni)
have dimension 1 iff the restriction of any finite-dimensional irreducible complex representation of
Mi to Ni has simple multiplicities.

For the forward direction, assume all irreducible representations of Z(Mi, Ni) are one-dimensional.
Let U and V be irreducible representations of Mi and Ni, respectively. Then HomNi(U, V ) is an
irreducible representation of Z(Mi, Ni), so it must have dimension 1. But dim HomNi(U, V ) is
precisely the multiplicity of V in ResNi U , so multiplicity is simple. For the other direction, suppose
Z(Mi, Ni) has an irreducible representation of dimension more than 1. Again, let U and V be
irreducible representations of Mi and Ni. Since by Schur’s lemma we have EndMi(U) ∼= Mi, this
implies EndNi(U) ∼= Z(Mi, Ni). But then the decomposition of ResNi U into simple Ni-modules
{Wj} must have some simple module appearing more than once. But since Z(Mi, Ni) is a direct
sum of modules of the form HomNi(Wr,Ws), the multiplicity of Ni in ResNi(U) is more than 1,
implying branching is not simple. Hence, for each i the conclusion holds, and by the discussion
above, the conclusion holds for M and N .

Define Z(`, k) := Z(C[S`+k],C[S`]). We will show that Z(n− 1, 1) = Z(C[Sn],C[Sn−1]) is commu-
tative, then use Proposition 1 to conclude that at each step of the branching graph the restriction
is simple, and hence the branching for symmetric groups is simple. Before we can do this, we need
several lemmas.

Lemma 1 ([5], Section 2).Every element g ∈ Sn is conjugate to its inverse, that is g−1 = hgh−1

for some h ∈ G. Moreover, such h may be chosen from the subgroup Sn−1.

Proof. Let g ∈ Sn. Writing g as a product of disjoint cycles g = c1 · · · ck, it is clear that g−1 =
c−1k · · · c

−1
1 and hgh−1 = (hc1h

−1) · · · (hckh−1). Recall that in the symmetric group, two elements
are conjugate iff they have the same cycle type. Since for each cycle ci = (j1 j2 · · · jr) in g, we
have c−1i = cr−1i = (jr jr−1 · · · j1), we get that g and g−1 have the same cycle type, and so there
exists some h ∈ Sn with hgh−1 = g−1. To prove the second assertion, let g′ ∈ Sn−1 be the
permutation on {1, · · · , n − 1} induced from g by removing n from the cycle containing it. Then
by the previous claim, there is some h ∈ Sn−1 such that (g′)−1 = hg′h−1. Note also that for every
cycle ci = (j1 j2 · · · jr) of g′, hcih−1 = (h(j1) h(j2) · · ·h(jr)). Hence, regarding h a permutation in
Sn (by treating n as a fixed point), we obtain hgh−1 = g−1, as desired.

We say that an algebra A over C is involutive if it has a bijective map to itself x 7→ x∗ such that
for all a ∈ C, x, y ∈ A, we have: (x+ y)∗ = x∗ + y∗, (ax)∗ = ax∗, (xy)∗ = y∗x∗, and (x∗)∗ = x. We
say an element x ∈ A is self-adjoint if x∗ = x.
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Lemma 2.Every element x in an involutive algebra can be written as x = u + iv where u and v
are self-adjoint.

Proof. Re-write

x =
x+ x∗

2
+ i
−i(x− x∗)

2
.

Since (x+x∗) = x∗+x and (−i(x−x∗))∗ = i(x∗−x) = −i(x−x∗), both (x+x∗)/2 and −i(x−x∗)/2
are self-adjoint, and conclusion follows.

Lemma 3 ([5], Section 2).An involutive algebra over C is commutative iff all of its element commute
with its adjoint. If any real element of algebra is self-conjugate then it is commutative.

Proof. The forward direction is trivial. Let A be an involutive algebra over C in which every
element commutes with its adjoint. Let u, v ∈ A such that u = u∗ and v = v∗. Then (u + iv)∗ =
u∗− iv∗ = u− iv. Since u+ iv is an element of the algebra, it commutes with its adjoint, so we get
(u+ iv)(u− iv) = (u− iv)(u+ iv). Expanding, we obtain that uv = vu. Hence, any two self-adjoints
commute. Now let x, y ∈ A be arbitrary. By Lemma 2, we may write x = u + iv and y = a + ib
where u, v, a, b are self-adjoint. We have

xy = (u+ iv)(a+ ib) = ua+ i(va) + i(ub)− vb = au+ i(av) + i(bu)− bv = (a+ ib)(u+ iv) = yx

and hence A is commutative, as desired.

To prove the second claim, let A be an involutive algebra over C that is a complex hull of a real
algebra. Suppose every real element of A is self-conjugate. By the previous claim, it suffices to show
that every element x ∈ A commutes with its adjoint. It is clear that we may write x = u+iv for some
real elements u, v. Since u and v are real, they are self-adjoint by assumption, so (u+ iv)∗ = u− iv.
But then uv is also real and thus self-adjoint, so uv = (uv)∗ = v∗u∗ = vu. Therefore,

xx∗ = (u+ iv)(u− iv) = u2 − v2 = (u− iv)(u+ iv) = x∗x

and the conclusion follows.

Theorem 3 ([5], Section 2).The branching of the chain C[S1] ⊆ · · · ⊆ C[Sn] is simple.

Proof. We show that every real element in Z(n− 1, 1) ⊆ C[Sn] is self-conjugate. Let f =
∑

i rigi ∈
R[Sn] be an arbitrary real element. By definition of centralizer, f commutes with every element
of C[Sn], so in particular with all the elements in Sn. Since Sn is a basis of the group algebra,
the above coefficients ri in the expansion of f are unique, so the automorphism ϕh : f 7→ hfh−1

has f as a fixed point for every h ∈ Sn−1. For each gi in the expansion of f , let hi ∈ Sn−1 such
that g−1i = higih

−1
i as in Lemma 1. Then since ϕi : f 7→ hifh

−1
i fixes f , the expansion of f must

(by uniqueness) contain the terms cigi and cig
−1
i for every i. But then f is a fixed point of the

anti-automorphism x 7→ x−1, so f∗ = f as desired. By Lemma 3, Z(n − 1, 1) is commutative.
Applying Proposition 1 inductively n times, we conclude that the branching for symmetric groups
is simple.
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4 Young-Jucys-Murphy elements

In the previous section we proved that the centralizer Z(n − 1, 1) is commutative. In this section,
we give a much more detailed description of its structure and properties, by introducing Young-
Jucys-Murphy elements. Set X1 = 0. For each i = 2, · · · , n, we define

Xi := (1 i) + (2 i) + · · ·+ (i− 1 i) ∈ C[Si],

which are called Young-Jucys-Murphy elements (YJM elements). Note that Xi is the sum of all
transpositions that appear in Si, but not in Si−1, so Xi is the sum of all transpositions in Si minus
the sum of all transpositions in Si−1. Moreover, it is easy to see that the sum of all transpositions in a
symmetric group commutes with every element of the group algebra, soXi ∈ Z(i)−Z(i−1) ⊆ GZ(i).
Let σ ∈ Sn, and let Pσ denote the sum of all permutations in Sn that have the same cycle structure
as σ. Let Pi denote the sum of all cycles of length i in Sn. We will need the following lemma:

Lemma 4 (Inspired by [4], Section 2).The center Z(n) of the group algebra C[Sn] is generated by
the elements Pσ where σ is a cycle in Sn.

Proof. First, we show that the set {Pσ : σ ∈ Sn} is a linear basis of Z(n). Note that for any σ, τ ∈ Sn,
we have τPστ−1 = Pσ, since conjugation doesn’t change cycle type and thus simply permutes the
summands in Pσ. Thus, Pσ ∈ Z(n) for each σ ∈ Sn, and the above claim makes sense. Next, note
that it is impossible to add elements of different cycle types with nonzero coefficients and get zero,
so Pσ’s are linearly independent. It remains to show they span Z(n). Let f =

∑
σ∈Sn aσσ ∈ Z(n)

(note this decomposition is unique), and let τ ∈ Sn. Since f is in the center of the group algebra
C[Sn], we have fτ = τf , which means τfτ−1 = f , i.e. f is invariant under conjugation by the
elements in Sn. Hence, in the expansion of f , conjugate elements have the same coefficients (that
is aσ = aτστ−1). Since elements of Sn are conjugate iff they have the same cycle type, we have that
aρ = aµ whenever ρ and µ have the same cycle type (or correspond to the same partition). Then,
factoring out the coefficients in f , we obtain f =

∑
σ∈P (n) aσPσ, where the sum is taken over all

partitions of n, denoted by P (n). Hence, indeed {Pσ : σ ∈ Sn} is a linear basis.

Next, note that 〈P1, · · · , Pn〉 ⊆ Z(n) by a previous remark, so it remains to show the other con-
tainment. Since {Pσ : σ ∈ Sn} is a linear basis of Z(n), it suffices to show that Pσ ∈ 〈P1, · · · , Pn〉
for all σ ∈ Sn. We proceed by induction on the number of elements σ moves, k. Suppose k = 0 or
k = 1. Then σ is the identity permutation, and clearly id ∈ 〈P1, · · · , Pn〉, so the base case holds.
For the inductive case, let σ be a permutation in Sn that moves k elements, and suppose the claim
holds for any permutations that move at most k − 1 elements. Write σ = σ1 · · ·σr as a product of
disjoint cycles σi, each of length ni. Consider the product Pσ1 · · ·Pσr = Pn1 · · ·Pnr ∈ Z(n). Let ρ
be a summand in Pn1 · · ·Pnr . Note that if ρ is made up of disjoint cycles, it produces a summand in
Pσ. If ρ is made up of non-disjoint cycles, it is a summand in some Pτ where τ ∈ Sn moves strictly
less elements than σ. Using this analysis, we may write

Pn1 · · ·Pnr = Pσ1 · · ·Pσr = aσPσ +
∑
τ

aτPτ ,

where the last sum is taken over all τ ∈ Sn that move strictly less elements than σ. By the inductive
hypothesis, the last sum is in 〈P1, · · · , Pn〉. Then

Pσ =
1

aσ

(
Pn1 · · ·Pnr −

∑
τ

aτPτ

)
∈ 〈P1, · · · , Pn〉,
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and the conclusion follows.

The above lemma could also be deduced from the fact that the power sums generate the algebra of
symmetric functions. For more details, refer to the Chapter 1 of [3].

Theorem 4 ([5], Section 2).The center of the group algebra C[Sn] is contained in the algebra
generated by the center of C[Sn] and the nth YJC element, i.e.

Z(n) ⊆ 〈Z(n− 1), Xn〉.

Proof. For k, r ∈ N+, denote by Pk(r) the sum of all k-cycles in Sr. By Lemma 4, it suffices to
show that for every k ∈ [n], Pk(n) ∈ 〈Z(n− 1), Xn〉. We proceed by induction on k. Note that Xn

is the difference of the sums of all transposition in Sn and Sn−1, so we write:

Xn =
n−1∑
i=1

(i n) =

n∑
i 6=j
i,j=1

(i j)−
n−1∑
i 6=j
i,j=1

(i j).

It is clear that the first sum is an element of Z(n) and the second sum is an element of Z(n − 1).
Then we get P2(n) ∈ Xn+Z(n−1) ⊆ 〈Zn−1, Xn〉, so the claim holds for k = 2. In a similar manner,
it is easy to show that the claim holds for k = 3, by writing out the expression of X2

n. Suppose, the
claim holds for k − 1. Observe that we may write:

Xn ·
n∑

i1,··· ,ik=1

(i1 · · · ik−1 n) =
∑
i 6=ij

j=1,···n−1

(i n)(i1 · · · ik−1 n) +
∑

i,i1,··· ,ik−1

(i i1 · · · ik−1 n).

Denote the expression on the left-hand side by A, the first sum on the right-hand side by B and
the second sum by C. Let

D :=
n−1∑

i,j,i1,··· ,ik−1

(i j)(i1 · · · ik−1) ∈ Z(n− 1).

By the inductive hypothesis, B +D ∈ 〈Z(n− 1), Xn〉, so C = A− (B +D)−D ∈ 〈Z(n− 1), Xn〉
as well. But then we get

Pk(n) =
∑

i,i1,··· ,ik−1

(i i1 · · · ik−1 n) +
∑

i,i1,··· ,ik

(i i1 · · · ik−1 ik) ∈ 〈Z(n− 1), Xn〉

and the claim follows.

Corollary 1 ([5], Section 2).The GZ algebra is generated by YJM elements, i.e.

GZ(n) = 〈X1, X2, · · · , Xn〉.

Proof. We proceed by induction on n. When n = 2, we have GZ(2) = C[S1] = C[1, (1 2)] =
〈(1 2)〉 = 〈X1, X2〉, so the base cas holds. Suppose that the claim holds for n − 1, i.e. GZ(n −
1) = 〈X1, · · · , Xn−1〉. Hence, it suffices to show that GZ(n) = 〈GZ(n − 1), Xn〉. We prove it by
double containment. By definition of GZ(n), it is clear that Z(i) ⊆ GZ(n − 1) or all i ∈ [n − 1],
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hence for the forward inclusion it suffices to show Z(n) ⊆ 〈GZ(n − 1), Xn〉. By Theorem 4, we
get that Z(n) ⊆ 〈Z(n − 1), Xn〉 ⊆ 〈GZ(n − 1), Xn〉, and so the forward containment follows.
The reverse containment follows from the facts that GZ(n − 1) ⊆ GZ(n) by definition and that
Xn ∈ Z(n)− Z(n− 1) ⊆ GZ(n).

Theorem 5 ([5], Section 2).The centralizer Z(n− 1, 1) is generated by Z(n− 1) and Xn, i.e.

Z(n− 1, 1) = 〈Z(n− 1), Xn〉.

Proof. We proceed by double containment. For the forward containment, note that a basis in
Z(n − 1, 1) can be written as a union of a basis of the elements in the center of C[Sn] and the
remaining elements in Sn that commute with everything in C[Sn−1]. Elements of the latter type
must contain n in one of the cycles, and hence are generated by elements of the form

n−1∑
i
(`)
j =1

all distinct

(i
(1)
1 · · · i

(1)
k1

n)(i
(2)
1 · · · i

(2)
k2

) · · · (i(r)1 · · · i
(r)
kr

). (1)

Note that summing each of the expressions above with the sum of all permutations of the same
cycle type that don’t contain n (note each such sum is in Z(n − 1)), we obtain every Pσ for
σ ∈ Sn. Since we know that each Pσ ∈ Z(n), we get that each of the expressions in (1) are
contained in Z(n) − Z(n − 1). Hence, Z(n − 1, 1) ⊆ 〈Z(n − 1), Z(n)〉. But since by Theorem 4,
Z(n) ⊆ 〈Z(n−1), Xn〉, we have Z(n−1, 1) ⊆ 〈Z(n−1), Xn〉, as desired. For the reverse containment,
first note that Z(n − 1) ⊆ Z(n − 1, 1) simply by definition. Moreover, for any cycle s ∈ Sn−1, we
have (s(i) n)s = s(i n) for all i appearing in s and (i n)s = s(i n) for all i not appearing in s.
Therefore, all elements of Xn commute with C[Sn−1], and the conclusion follows.

5 Main result: relationship between symmetric groups and Young
diagrams

Note that Theorem 5 in the previous section provides another way of seeing that the centralizer
Z(n − 1, 1) is commutative. Now, let ρ ∈ S∧n be any irreducible representation. Let {vT } be the
Gelfand-Tsetlin basis of V ρ with respect to the chain S0 ⊆ S1 ⊆ · · · ⊆ Sn. We call this basis the
Young basis for V ρ.

We have already mentioned that the Gelfand-Tsetlin algebra is a maximal commutative subalgebra
of C[Sn]. Combining this fact with Corollary 1 (see [1] for details), one may check that every element
of the Young basis is a common eigenvector of ρ(Xi) for i ∈ [n], determined up to a scalar by the
eigenvalues corresponding to these elements. This fact suggests the following definition. For any
vector vT in the Young basis of V ρ, define the weight of vT , denoted by

α(vT ) = (a1, · · · , an) ∈ Cn

to be the tuple of eigenvalues for ρ(X1), · · · , ρ(Xn), respectively; that is ρ(Xi)vT = aivT for all
i ∈ [n]. Next, define

Spec(n) := {α(vT ) : vT ∈ Young basis for some ρ ∈ S∧n} = {α(vT ) : T ends in ρ, ρ ∈ S∧n}.
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We have already mentioned at the end of Section 2, that elements of the spectrum Spec(n) determine
the Young vector vT uniquely, up to a scalar. Therefore,

dim GZ(n) = |Spec(n)| =
∑
ρ∈S∧n

dim ρ.

By definition of Spec(n), we see that there is a natural bijection between its elements and the paths
in the branching graph of the chain S0 ⊆ S1 ⊆ · · ·Sn. Let α→ Tα and T 7→ α(vT ) be the bijection.
Now we define the equivalence relation ∼ on Spec(n) as follows:

α ∼ β ⇐⇒ Tα and Tβ have the same end node

or equivalently iff vα := vTα and vβ := vTβ belong to decomposition of the same irreducible repre-
sentation of Sn. To quotient out Spec(n) by this relation means identifying all pahs with the same
end. Hence, from the definition Spec(n), it is clear that |Spec(n)/ ∼ | = |S∧n |. In the rest of this
section, we describe this set and equivalence relation more precisely, and give an explicit description
of the branching graph corresponding to the inductive chain of symmetric groups.

For any i ∈ [n− 1], define transpositions si := (i i+ 1), called Coxeter generators. The proof of the
following lemma can be found in [5].

Lemma 5 ([5], Section 4). For any α = (a1, · · · , ai, ai+1, · · · an) ∈ Spec(n). Then for all i:
(1) ai ∈ Z;
(2) ai 6= ai+1;
(3) if ai+1 = ai ± 1, then si · vα = ±vα;
(4) if ai+1 6= ai ± 1, then α′ = si · α = (a1 · · · ai−1 ai+1 ai · · · an) ∈ Spec(n) and α ∼ α′.

We say that a Coxeter generator si is admissible for α if ai+1 6= ai±1 for all i. We say that a vector
α = (a1, · · · , an) ∈ Cont(n) is a content vector if the following conditions are satisfied:
(1) a1 = 0;
(2) {aq − 1, aq + 1} ∩ {a1, · · · , aq−1} 6= ∅;
(3) if ap = aq = a for p < q, then {a− 1, a+ 1} ⊆ {ap+1, · · · , aq−1}.

Note that the first and the second condition force a2 to be either 1 or −1. Similarly, a3 − 1 and
a3 + 1 can take values 0, 1,−1, so possible positive values of a3 are 1 and 2 and possible negative
values of a3 are −1 and −2. In general, if aq > 0, it has to be the case that ai = aq − 1 for some
i < q, and if aq < 0, it has to be the case that ai = aq + 1 for some i < q. It is obvious from the
second condition that each aq is an integer.

Example 1. One can check that (0, 1,−1, 0,−2, 2, 1) ∈ Spec(7). The first and second conditions
are clearly satisfied. To see that the third condition holds, first note that a1 = a4 = 0 and
{−1, 1} = {a2, a3}, as desired. Similarly, a2 = a7 = 1 and {0, 2} ⊆ {−1, 0,−2, 2} = {a3, a4, a5, a6},
as desired.

Let Y denote the Young graph, the graph whose vertices are Young diagrams, and two vertices µ
and ν are joined by an edge ν → µ iff µ/ν is one single box. Recall that the number of paths
from ∅ to µ in the Young graph is in bijection with the number of standard young tableaux on
µ. Let Tab(n) denote the set of all paths from ∅ to all µ where µ ` n. For any Young diagram
(drawn in the English notation), we may define its content as follows. Viewing a Young diagram µ
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as a (partial) matrix, we may enumerate each cell by an ordered pair (i, j) where i and j are the
row and the column indices, respectively. We then define the content of each box (i, j) in µ to be
c(i, j) = j − i. Unsurprisingly, the content vectors defined before and contents of boxes in Young
diagrams are related. In fact, one can easily check that the sets Tab(n) and set of all content vectors
of length n, Cont(n), are in bijection. For any T = µ0 → µ1 → · · · → µn ∈ Tab(n), this bijection is
defined by sending T 7→ (c(µ1/µ0), · · · , c(µn/µn−1)). We demonstrate this bijection by an example.

Example 2. Let µ = (5, 4, 2, 1) ` 12. In the below figure, in the tableaux on the right, the number
inside each box is its content.

1 3 6 10 12

2 4 8 9

5 7

11

0 1 2 3 4

-1 0 1 2

-2 -1
-3

Given some standard Young tableaux (or, equivalently, a path from∅ to µ) as on the left in the figure
above, we obtain the content vector α as follows. For each k ∈ [12], we look at the cell of the tableaux
(i, j) that k is in, and set ak := c(i, j). So, we obtain α = (0,−1, 1, 0,−2, 2,−1, 1, 2, 3,−3, 4). It is
also clear that we can go back by reversing the steps (taking into an account the rules for standard
Young tableaux when two cells have the same content).

On the set Cont(n), we define the following equivalence relation ≈:

α ≈ β ⇐⇒ α can be obtained from β by a sequence of admissible permutations.

Let α, β ∈ Cont(n) and let T and S be the respective paths in Tab(n), via the bijection described
earlier. It can be shown (refer to [1]) that α ≈ β iff T and S are standard Young tableaux of the
same shape (iff the corresponding paths have the same end). Our goal in the rest of this paper is to
show that Spec(n) = Cont(n), that ∼ and ≈ coincide, and that the branching graph for symmetric
groups is isomorphic to the Young graph.

Theorem 6 ([5], Section 5). Spec(n) ⊆ Cont(n).

Proof. Let α = (a1, · · · , an) ∈ Spec(n). We will show that α satisfies all three axioms of Spec(n).
Note that since X1 = 0, we have ρ(X1) = 0, so a1 = 0 and the condition (1) is satisfied. We prove
the conditions (2) and (3) by induction on n. For n = 2, we have X2 = (1 2), so v = (ρ(12))2v = a22v
and thus a2 = ±1. Thus (2) is satisfied for n = 2 and (3) is satisfied trivially. Suppose (2) and (3)
hold for n− 1. Toward a contradiction, assume that {an − 1, an + 1} ∩ {a1, · · · , an−1} = ∅. Then
an−1 6= an± 1, so an 6= an−1± 1. Therefore, (n− 1 n) is admissible for α. Hence, by Proposition 5,
(a1, · · · , an−1, an, an−1) ∈ Spec(n). But then of course (a1, · · · , an−2, an) ∈ Spec(n−1), but neither
an ± 1 is in the set {a1, · · · , an−2}, contradicting the inductive hypothesis. So α satisfies (2). Next
assume that ap = an = a for some p ∈ [n] (note that for q 6= n, the claim holds by the inductive
hypothesis). Toward a contradiction suppose an − 1 /∈ {ap+1, · · · , an−1}. We may assume p is the
largest possible index, i.e. a /∈ {ap+1, · · · , an−1}. If a+ 1 occurred in the set {ap+1, · · · , an−1} more
than once, then by the inductive hypothesis, we would have that a = (a+ 1)− 1 also occurs in this
set more than once, which is impossible, as we assumed otherwise. Hence, a+1 occurs in that set at
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most once. If it doesn’t occur at all, then by the series of admissible transpositions, we may permute
the entries of α to obtain α′ = (· · · a a · · · ) ∈ Spec(n). But this is a contradiction to part (2) of
Lemma 5. If a + 1 occurs in the set {ap+1, · · · , an−1}, then again by admissible transpositions we
may transform α into α′ = (· · · , a a+ 1 a · · · ). However, one can check that such combination is a
contradiction to part (3) of Lemma 5 as well as the Coxeter relation sisi+1si = (i i+2) = si+1sisi+1.
Hence, the condition (3) is satisfied as well, and we conclude that α ∈ Cont(n).

Remark 1. Note that if for some α ∈ Spec(n) and β ∈ Cont(n) we have α ≈ β, then by definition
of ≈ and part (4) of Lemma 5, we obtain β ∈ Spec(n) and α ∼ β. That is, ≈ is finer than ∼.

Theorem 7 ([1], Section 3.3).The equality Spec(n) = Cont(n) holds and the equivalence relations
∼ and ≈ coincide. The branching graph of the multiplicity-free inductive chain

S0 ⊆ S1 ⊆ · · · ⊆ Sn ⊆ Sn+1 ⊆ · · ·

is isomorphic to the Young graph Y.

Proof. Since Cont(n) and Tab(n) are in bijection, we know |Cont(n)| = |Tab(n)|. Since the relation
≈ identifies all standard Young tableaux of the same shape, we have |Cont(n)/ ≈ | is equal to the
number of Young diagrams of size n, which is the number of partitions of n, denoted by p(n). We
have also seen that |Spec(n)/ ∼ | = |S∧n |. Since the number of irreducible representations is equal
to the number of conjugacy classes of Sn, and the latter is equal to the number of partitions of n,
we have

|Cont(n)/ ≈ | = p(n) = | Spec(n)/ ∼ |.

Next, by Remark 1, we know that ≈ is finer than ∼, so every equivalence class of ≈ is a subset of an
equivalence class of ∼. Thus, we have |Spec(n)/ ∼ | ≤ | Spec(n)/ ≈ |. Since also Spec(n) ⊆ Cont(n)
by Theorem 6, we have | Spec(n)/ ≈ | ≤ |Cont(n)/ ≈ |. Putting it all together, we have:

| Spec(n)/ ∼ | ≤ | Spec(n)/ ≈ | ≤ |Cont(n)/ ≈ | = |Spec(n)/ ∼ |.

Hence, all the weak inequalities above are in fact equalities. In particular, |Spec(n)/ ≈ | =
|Cont(n)/ ≈ | implies Spec(n) = Cont(n) and | Spec(n)/ ∼ | = | Spec(n)/ ≈ | implies that the
two relations ∼ and ≈ coincide, as desired.

Finally, we show that the graphs are the same. Recall that the elements of Spec(n) are in bijection
with the paths of the branching graph of the finite chain S0 ⊆ S1 ⊆ · · · ⊆ Sn. The elements of
Cont(n) are, in turn, in bijection with all the paths in the Young graph from ∅ to a partition
of n. Thus, the equality Spec(n) = Cont(n) gives us a natural bijection between the paths in
the branching graph and the Young graph. Further, recall α ≈ β in Cont(n) iff the two paths
in the Young graph have the same end and ∼ is defined in the same way, but for the branching
graph. Thus, the correspondence between the equivalence relations ∼ and ≈ implies that the
vertices of the branching graph are in one-to-one correspondence with the vertices of Y. In this
case, correspondence of paths implies that the two graphs are isomorphic, as desired.

We have the following important corollary.
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Corollary 2 ([5], Section 7).The multiplicity of an irreducible representation πµ of Sn in a repre-
sentation πλ of Sn+k is the number of paths between the diagrams λ and µ (where λ ` n+k, µ ` n).

The above approach to the representation theory of Sn has many advantages, as many important
well-known results follow naturally as corollaries. For example, the branching rule can be proven as
a simple corollary of Corollary 2. For more exciting consequences, we refer the reader to [1].
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